Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Document Type
Year range
1.
Wuli Xuebao/Acta Physica Sinica ; 72(4), 2023.
Article in Chinese | Scopus | ID: covidwho-2258961

ABSTRACT

AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) are widely used in sterilization, sensing, water purification, medical treatment, non-line of sight (NLOS) communication and many other fields. Especially it has been reported that the global novel coronavirus (COVID-19) can be effectively inactivated by the DUV light with a wavelength below 280 nm (UVC) within a few seconds, which has also attracted great attention. However, the external quantum efficiency (EQE) of UVC LED is still at a low level, generally not more than 10%. As an important component of EQE, internal quantum efficiency (IQE) plays a crucial role in realizing high-performance DUV-LED. In order to improve the IQE of AlGaN-based DUV-LED, this work adopts an electron blocking layer (EBL) structure based on InAlGaN/AlGaN superlattice. The results show that the superlattice EBL structure can effectively improve the IQE compared with the traditional single-layer and double-layer EBL structure for the DUV-LED. On this basis, the optimization method based on JAYA intelligent algorithm for LED structure design is proposed in this work. Using the proposed design method, the InAlGaN/AlGaN superlattice EBL structure is further optimized to maximize the LED' s IQE. It is demonstrated that the optimized superlattice EBL structure is beneficial to not only the suppression of electron leakage but also the improvement of hole injection, leading to the increase of carrier recombination in the active region. As a result, the IQE of the DUV-LED at 200 mA injection current is 41.2% higher than that of the single-layer EBL structure. In addition, the optimized structure reduces IQE at high current from 25% to 4%. The optimization method based on intelligent algorithm can break through the limitation of the current LED structure design and provide a new method to improve the efficiency of AlGaN-based DUV-LED. © 2023 Chinese Physical Society.

2.
Gallium Nitride Materials and Devices XVII 2022 ; 12001, 2022.
Article in English | Scopus | ID: covidwho-1891717

ABSTRACT

In the last year the market of ultraviolet (UV) light-emitting diodes (LEDs) had a huge increase due to the higher demand of devices caused by the pandemic crisis. In fact, it was demonstrated that UV LEDs, and in particular UV-B and UV-C LEDs, could be used as efficient sources for the disinfection of surfaces against Sars-CoV-2. In this work, we investigated electrical, optical and spectral degradation mechanisms in a series of commercial UV-C LEDs (275 nm - 280 nm) available on market. We present an exhaustive comparison of the main sample characteristics, studying their evolution when the LEDs are submitted to constant current stress tests (for about 350 h) at the absolute maximum current indicated in the respective datasheets. In particular, we carried out an extensive set of measurements, including current-voltage (I-V), optical power-current (L-I) and power spectral density (PSD) characteristics at various steps of stress, combined with the analysis of the drive voltage during the tests and of the thermal droop of the devices. We found: (i) a set of LEDs with a promising L80 of 10000 min (about 170 h), (ii) the presence of parasitic peaks and bands in all devices, ascribed to radiative recombination outside the QWs, and (iii) a substantial increase in thermal droop in all LEDs due to a decrease in injection efficiency and an increase in SRH recombination events during the stress tests. © 2022 SPIE. All rights reserved.

3.
Advanced Materials Technologies ; 2022.
Article in English | Scopus | ID: covidwho-1733835

ABSTRACT

AlGaN-based deep ultraviolet light-emitting diodes (UV LEDs) have gained rapidly growing attention due to their wide applications in water purification, air disinfection, and sensing as well as optical communication. Moreover, deep UV radiation has been verified as one of effective way to inactivate COVID-19. However, although numerous efforts have been made in deep UV LED chips, the reported highest external quantum efficiency (EQE) of them is 20.3%, which is far lower than that of visible LEDs. The EQE of commercial packaged AlGaN-based deep UV LEDs is usually lower than 5%, which will cause serious reliability problems as well. Therefore, it is very urgent to improve EQE and reliability of the devices from packaging level. In this review, a systematical summarization about the packaging technologies of AlGaN-based deep UV LEDs has been analyzed and future prospects have been made as well. Firstly, this work provides a brief overview of the devices and analyzes why the packaging level reduces EQE and reliability in theory. Then, systematically reviews the recent advances in packaging technologies and deep UV micro-LEDs. Finally, conclusions and outlooks are given as well. This review is of great significance for promoting the development of the packaging technologies for AlGaN-based deep UV LEDs. © 2022 Wiley-VCH GmbH

4.
Revista Mexicana de Fisica ; 68(2), 2022.
Article in English | Scopus | ID: covidwho-1729058

ABSTRACT

Crisis in coronavirus times requires understanding the effects on society and establishing efficient mechanisms to prevent infections. The disinfection of personal protection equipment by UVC light remains a key opportunity area. Therefore, this letter presents the main drawbacks and challenges on the fabrication of deep ultraviolet LEDs based on III-nitrides, such as the substrate selection, dislocation reduction, the increase of external quantum efficiency, enhancement of the radiative recombination in the active region, the complications to reach high Al content in AlGaN-based UVC LED avoiding the reduction of the p-doping, replacing the p-GaN contact layer by p-AlGaN without hindering the deposition of ohmic contacts. Furthermore, the cubic phase is suggested as a promising candidate for AlGaN UVC-LEDs applications as is discussed in this work. © 2022

SELECTION OF CITATIONS
SEARCH DETAIL